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MMD and MMD flow

m Introduction to MMD as an integral probability metric
m Connection with neural net training

m Wasserstein-2 Gradient Flow on the MMD
m Convergence: adaptive kernel

® Neural Net implementation

* Interpolation to x?2

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow (NeurIPS 2019)
Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial training
(ICLR 2025)

Chen, Mustafi, Glaser, Korba. G, Sriperumbudur (De)-regularized Maximum

Mean Discrepancy Gradient Flow (submitted JMLR) 2/30



MMD and MMD flow

m Introduction to MMD as an integral probability metric
m Connection with neural net training
m Wasserstein-2 Gradient Flow on the MMD
m Convergence: adaptive kernel
® Neural Net implementation
* Interpolation to x?2

Main motivation: gradient flow when the target distribution
represented by samples

m A different kind of particle flow to diffusion models
m Neural network training dynamics

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow (NeurIPS 2019)
Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial training

(ICLR 2025)

Chen, Mustafi, Glaser, Korba. G, Sriperumbudur (De)-regularized Maximum

Mean Discrepancy Gradient Flow (submitted JMLR) 2/30



The MMD, and MMD flow



The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) = sup [Epf(X) —Bof(Y)]

liFll<t
Hz) = (f,0(z))y
(p(z), 0(z'))y = k(z,2")

Witness f for Gauss and Laplace densities
08 : : ‘ ; :

e
0.6r = Gauss |
m— |_aplace
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) = sup [Epf(X) —Bof(Y)]

liFll<t
Hz) = (f,0(z))y
(p(z), 0(z'))y = k(z,2")

For characteristic RKHS H, MMD(P,Q)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiier, 1997)
m Bounded Lipschitz (Wasserstein distances) (pudtey, 2002
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The MMD and witness in closed form

The MMD:
Witness f for Gauss and Laplace densities
0.8
—f
MMD(P, Q) 06 = Gauss ||
— = |_aplace
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= sup [Epf(X)—Eqf(Y)] g o
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The MMD and witness in closed form

The MMD:
MMD(P, Q) Hee
= sup [Epf(X)—Eqf(Y)] Epf(X) =Ep(p(X), )y
WFllze<t = (Ep[0(X)],f)a

" e s up = aly = (up, f)ay
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The MMD and witness in closed form

The MMD:
MMD(P, Q)

= sup [Epf(X)-Bof(Y)] <5
[Ifll<1

= sup (f,pup — Lo)y f*
[E[pst

= [lup — Bolly

* wp — HQ
lup — pol
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The MMD and witness in closed form

The MMD:

MMD(P, Q)

= sup [Epf(X)—Eqf(Y)]
lIfll2<1

= sup (f,pp— KQ)y
[IFll2<

= |lup — olly

(@) o< (pp — ko, p(z) gy
= Epk(X,z) - Bok(Y,z)
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The MMD and witness in closed form

The MMD:

MMD(P, Q)

= sup [Epf(X)—-Eqf(Y)]
IF <1

= sup (f,up — LQ)y
1fllx<1

= |lup — 1qlly

In terms of kernels:

MMD?*(P, Q) = ||pp — poll3,

- EPk(:E) ml) + EQk(yz y/) - 2EP,Qk($1 y)

(a) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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MMD Flow (NeurIPS 19)

aTI X1V > stat > arXiv:1906.04370

Statistics > Machine Learning
[Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2)]

Maximum Mean Discrepancy Gradient Flow

Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton
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Motivation: Neural Net training

. 1 &
= W P (E ; 5Zi>

Optimization using gradient de-
scent:

1 n
. 1 N 5 Zit—"_l = Zzt_fyvztc <526Z1i>
min [y =~ ¥ ¢z =1

Z, 2y o

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training

. 1 &
min L| — Z 0z, —
Z,nin€2 \ M i n—00

(x,y) ~ data

. 1 & . 2
min Ellly =~ 3 ;02 e i E g [y = E [, 0111
ZponZy e N = oo UsH

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018) 8/30



Motivation: Neural Net training

From previous slide:

1316171;1 L(v):=Egyllly - Ezw[¢z(z)]|%]

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Motivation: Neural Net training

From previous slide:

1Vn€i7r)1 L(v):=Egyllly - Ezw[¢z(z)]|%]

Connection to the MMD:
m Assume well-specified setting, y(z) = Ey,+[¢ v ()]

m Random feature formulation,

L) = Bz [[Evnw[p0(2)] = Eznnl$z(@))lP] = MMD*(v, %)

m The kernel is: k(U, Z) = E;[¢v(z) dz(z)].

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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Intuition: MMD as “force field” on v

Assume henceforth

v,v* € Py(RY) := {,u, c P(RY) : /||:1:||2d,u,(m) < oo}.

MMD as free energy: target v*, current distribution v

1 1 1
F(v) = §MMD2(1/*, v) = 5 B, k(z,z') + 5 E,k(y,v) — Eu,+k(z, )

interaction constant confinement

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Intuition: MMD as “force field” on v

Assume henceforth
v,v* € Py(RY) := {,u, c P(RY) : /||:1:H2d,u,(m) < oo}.
MMD as free energy: target v*, current distribution v

1 1 1
F(v) = 5MMD2(U*, v) = 5 B, k(z,z') + 5 E,k(y,v) — Eu,+k(z, )

interaction constant confinement

: iid. Lid.
Consider {y;}7; ~ v* and {z;}]; ~ v.

Force on a particle z:

_ szk(z,mj) + szk(z,yj) = V.o, (2)
J J

Can we formalize this?

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pz(Rd), Wz) at p is h € L?(u) where h : R? — R4,
Define Vyy, F(u) of F at w using Taylor expansion

F((1d + €h) ) = F() + € (Vi F(w), B oy + 0() (1)

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pz(Rd), Wz) at p is h € L?(u) where h : R? — R4,
Define Vyy, F(u) of F at w using Taylor expansion

F((1d + €h) ) = F() + € (Vi F(w), B oy + 0() (1)

The gradient flow is then:
6,51/,5 = div(ytV sz(l/t))

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows

Tangent space of (Pz(Rd), Wz) at p is h € L?(u) where h : R? — R4,
Define Vyy, F(u) of F at w using Taylor expansion

F((1d + €h) ) = F() + € (Vi F(w), B oy + 0() (1)

The gradient flow is then:
Oivy = div(ve V y, F (V)
Under reasonable assumptions [A. Theorem 10.4.13]
Vi, F(u) = V7 (1),
where in direction £:
Fu+e€) = }"(MHE/ (w)(z)dé(z)+o(e)  n+ef € Pa(RY) (2)
[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of

probability measures. (2008)
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Wasserstein gradient flow on MMD
First variation of 2 MMD?(v*,v) =: F(v)
7 (w)2) = furw(2) = 2(Bunn [R(U, 2)] = Evan[k(U, 2)])
The W5 gradient flow of the MMD:
Oy = div(ve Vw, F(v¢)) = div(ve Vs )

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on MMD
First variation of 2 MMD?(v*,v) =: F(v)
Fw)(2) = furp(z) = 2(Euns[K(U, 2)] = Eunn[k(U, 2)])
The W5 gradient flow of the MMD:
Oy = div(ve Vw, F(v¢)) = div(ve Vs )

McKean-Vlasov dynamics for particles (existence and uniqueness
under Assumption A):

dZi = — Vg, fuu,(Zy)dt, Zg ~ Vg

. d
Assumption A: k(z,z) < K, for all z € RY, Ei:l [|6:k(z,-)||? < K14 and
Z” 1 18:8;k(z, |2 € Kag4, d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

Uns1 = (I =YV furu)#Vn
Zn+1 =2y — 'YvanV*,Vn(Zn); Zo ~ Vo, Ly ~ VU,

Under Assumption A, v, approaches v; as vy — 0

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

Uns1 = (I =YV furu)#Vn
Zn+1 =2y — 'YvanV*,Vn(Zn); Zo ~ Vo, Ly ~ VU,

Under Assumption A, v, approaches v; as vy — 0

Consistency? Does v; converge to v* as t — 007

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency

Can we use geodesic (displacement) convexity?

m A geodesic p; between v; and v5 is given by the transport map
T2 : R — R%:
pr = ((1—t)Id+ tT,,”f)#y1
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Consistency

Can we use geodesic (displacement) convexity?
m A geodesic p; between v; and v5 is given by the transport map
T2 : R — R%:
pr = ((1— t)ld + ¢T22)
m A functional F is displacement convex if:

Flpt) < (1 - t)F(n) + tF(v2)

#v1
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Consistency

Can we use geodesic (displacement) convexity?
m A geodesic p; between v; and v5 is given by the transport map
T2 : R — R%:
pr = ((1— B)Id + tT22)
m A functional F is displacement convex if:

Flpt) < (1 - t)F(n) + tF(v2)

#v1

Source and Target distribution Source and Target distribution

M M D 1S I]_Ot dlsp]_ace— Wasserstein interpolation (po)ceo,1) Mixture interpolation (3d)ee 0,11
“’-(r’\

ment convex in general

(it is always mixture
Figure from Korba, Salim, ICML 2022 Tutorial, “Sampling as

Convexl)' First-Order Optimization over a space of probability measures”

1 F(tvn + (1 — tywe) < tF(1) + (1 — )F(va)  VEe[0,1]).
14/30



MMD flow in practice

® Data
@® Particles

¥
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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MMD flow in practice
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Emmpirical observations

Some observations:
m Almost all particles tend to collapse at the center of mass m of the
target v*, ie.: (vy >~ dp)
However, the loss stops decreasing: Vf,+ ,,(2) ~ 0 for z on the
support of v; (and is small when far from v*)...
...and in general, Vf,. ,,(z) # 0 outside the support of v;.
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Emmpirical observations

Some observations:

m Almost all particles tend to collapse at the center of mass m of the
target v*, ie.: (vy >~ dp)
However, the loss stops decreasing: Vf,+ ,,(2) ~ 0 for z on the
support of v; (and is small when far from v*)...
...and in general, Vf,. ,,(z) # 0 outside the support of v;.

Idea: Adapt the kernel according to distance of v; to v*.

m “Broad” kernel when distributions far apart,

m “narrow” kernel when they are close.

Noise injection in NeurIPS 2019 was a first attempt.

16/30



Noise injection for convergence

Noise injection: Evaluate Vf,« ,, outside of the support of v; to get a
better signal!
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Noise injection for convergence

Noise injection: Evaluate Vf,« ,, outside of the support of v; to get a
better signal!

m Sample u; ~ N (0,1) and f; is the noise level:

Zyir = Zy — YV or 0, (Ze + Brug); Ty ~ vy

B Similar to continuation methods,:l but extended to interacting particles.
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Noise injection for convergence

Noise injection: Evaluate Vf,« ,, outside of the support of v; to get a
better signal!

m Sample u; ~ N (0,1) and f; is the noise level:

Zyir = Zy — YV or 0, (Ze + Brug); Ty ~ vy

B Similar to continuation methods,:l but extended to interacting particles.

m Different from entropic regularization:

Ziv1 =2t — YV or 0, (Z2) + Prwg

m Blur RKHS kernel with ¢-dependent Gaussian noise

17/30



Noise injection: consistency

Recall: Ziv1 =2t — Yo p(Ze + Pru); Ty ~ Vg
Tradeoff for

m Large f:: v111 — vy not a descent direction any more:
F(vir1) > F(vi)
m Small f;: does not converge

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Noise injection: consistency

Recall: Ziv1 =2t — Yo p(Ze + Pru); Ty ~ Vg
Tradeoff for

m Large f:: v¢11 — vy not a descent direction any more:
F(vir1) > F(vi)
m Small f;: does not converge

Need such that:

Fi1) = Fi) < —ChE  ximw, [[IVForpn(Xe + Biwe) ]
ut~N(0,1)
t
Y B = o0
; t—o0

Then [A, Proposition 8]

F(v) < Fluo)e 07

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 18/30



Noise injected MMD flow in practice

® Data
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Noise injected MMD flow in practice

® Data
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Adaptive MMD Flow (ICLR 25)

ad I X1V > cs > arXiv:2405.06780

Computer Science > Machine Learning
[Submitted on 10 May 2024]

Deep MMD Gradient Flow without adversarial training

Alexandre Galashov, Valentin de Bortoli, Arthur Gretton
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Will an adaptive kernel help?
Define the two measures:
v* == N(0,0%Id) vi == N (p,0°1d).
Consider the family of MMDs:
MMD?2 (v, vt) with ko(z,y) = a %exp[—|lz — y||?/(202)]

0.4
—N(0,1)
_N(/‘tr 1)
0.3
0.2
0.1+
0
-5 0 5 10
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Will an adaptive kernel help?
Define the two measures:
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Will an adaptive kernel help?

Choose kernel such that:

o = argmax s ||V, MMDZ (%, ).

Then

o = ReLU(us]|?/(d +2) — 20%) /2,

Value of mean u:

10 — —— Adaptive
- —— Non adaptive

8 ™\

\
6 |
4
2
0

0 20000 40000 60000 80000 100000

30

25

20

15

10

Kernel width o

—— Adaptive
~—— Non adaptive

0

20000

40000

60000

80000 100000
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How to train an adaptive MMD (1)

Diffusion:

P (a1 |%e)
(:::::) —F e — (:::::) |‘|III' -—-—+ 7 rKECU
/’
q(x;lx.- 1

Generate forward path &, t € [0, 1], such that 7y = v*, and
= N(0,Id) is a Gaussian noise.
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How to train an adaptive MMD (1)

Diffusion:

Pl %) SN
@—} —}@—}xglﬁ [ Xy |
R

i

Generate forward path &, t € [0, 1], such that 7y = v*, and
= N(0,Id) is a Gaussian noise.

Given samples %y ~ i, the samples %:|%; are given by
I = adp + Pre, € € N(0,1d),
Withaozﬂ]_:landa]_:ﬂo:o.

m low t: Z; close to the original data Z,
m high ¢: Z; close to a unit Gaussian
Schedule (a¢, B¢) is the variance-preserving one of Song, Sohl-Dickstein, Kingma, Kumar,

Ermon, Poole. Score-based generative modeling through stochastic differential equatl%J]%0
(ICLR 2021)



How to train an adaptive MMD (2)
Time-dependent MMD training loss:

1 A .
F(8,t) = §E17tk9,t($t7 &) + Ep, v+ ko, t(Zt, v)

with kernel

k@,t(xi y) = ¢($: t: 9)T¢(y7 t: 9)

(6,1)

V*yi;t'

and witness f

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS
2017)

Binkowski, Sutherland, Arbel, G. (NeurIPS 2018) 24/30



How to train an adaptive MMD (2)
Time-dependent MMD training loss:

F(6,t) := %Eﬁtke,t(ftt: ;) + By, ko t(Zt, v)
with kernel
ko,1(z,y) = (2 t,6) " $(v; t,6)
and witness fV* e

Train ¢ by minimizing noise-conditional loss on forward path:
Frot(6, t) = F(6, t) + Ay Fe, (0, t) + AvFu(6, t),
Fiot(0) = Etvvio,1] [Fot (6, T)]
where
m Fy,(0,t)isa variance style penalty
m Fy(b,t) =+ (HVfV* w( :)||2 — 1)?, is a gradient penalty

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS
2017)

Binkowski, Sutherland, Arbel, G. (NeurIPS 2018) 24/30



Sample generation

Algorithm Noise-adaptive MMD gradient flow

Sample initial particles Z ~ N(0,Id)
Set At = (tmax — tmin)/ T
for 2= T to 0 do
Set the noise level t = 1At
Set Zt0 =7
for n=0to N; — 1 do
Zrt = zp - vz
end for
Set Z =z}
end for
Output Z

25/30



Results

Table: Unconditional generation, CIFAR-10. MMD GAN (orig.), used
mixed-RQ kernel. "Orig." — original paper, "impl." — our implementation.

Method FID IS NFE

MMD GAN (orig.) 39.90 651 -
MMD GAN (impl.) 13.62 893 -
DDPM (orig.) 3.17 946 1000
DDPM (impl.) 519 890 100

Discriminator flows

DGGF-KL 28.80 - 110
JKO-Flow 23.10 7.48 ~ 150
GS-MMD-RK 55.00 - 86
DMMD (ours) 8.31 9.09 100
DMMD (ours) 774 9.12 250

DDPM from (Ho et al., 2020). Discriminator flows include two KL gradient flows trained adversarially:
JKO-Flow (Fan et al., 2022) and Deep Generative Wasserstein Gradient Flows (DGGF-KL) (Hengfé/%]o,
2023). GS-MMD-RK is Generative Sliced MMD Flows with Riesz Kernels (Hertrich et al., 2024)
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m Gradient flows based on kernel dependence measures

m NeurIPS 2019, NeurIPS 2021, ICLR 2025, JMLR (submitted)

NeurIPS 2019:
ar (iV > stat > arXiv:1906.04370

Statistics > Machine Learning

[Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2)]
Maximum Mean Discrepancy Gradient Flow
Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton

NeurIPS 2021:

Statistics > Machine Learning

[Submitted on 16 Jun 2021 (v1), last revised 29 Oct 2021 (this version, v2)]

KALE Flow: A Relaxed KL Gradient Flow for
Probabilities with Disjoint Support

Pierre Glaser, Michael Arbel, Arthur Gretton

Adaptive MMD (ICLR 25):

ar <1V > cs > arXiv:2405.06780
Computer Science > Machine Learning
Isubmitted an 10 May 2024]

Deep MMD Gradient Flow without adversarial training
Alexandre Galashov, Valentin de Bortoli, Arthur Gretton

(De)regularized MMD
(JMLR, submitted):

ar <1V > stat > arXiv:2409.14980

Statistics > Machine Learning
[Submitted on 23 Sep 2024]

(De)-regularized Maximum Mean Discrepancy
Gradient Flow

Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Anna Korba, Arthur Gretton,
Bharath K. Sriperumbudur
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