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Main motivation: gradient flow when the target distribution
represented by samples

A different kind of particle flow to diffusion models
Neural network training dynamics
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The MMD, and MMD flow
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )� EQ f (Y )]

f (x ) = hf ; '(x )iH

'(x ); '(x 0)

�
H = k(x ; x 0)
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )� EQ f (Y )]

f (x ) = hf ; '(x )iH

'(x ); '(x 0)

�
H = k(x ; x 0)

For characteristic RKHS H, MMD(P ;Q) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]
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The MMD and witness in closed form

The MMD:

MMD(P ;Q)

= sup
kf kH�1

[EP f (X )� EQ f (Y )]
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The MMD and witness in closed form

The MMD:

MMD(P ;Q)

= sup
kf kH�1

[EP f (X )� EQ f (Y )]

= sup
kf kH�1

hf ; �P � �QiH

use

EP f (X ) = EP h'(X ); f iH
= hEP ['(X )] ; f iH
= h�P ; f iH
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The MMD and witness in closed form

The MMD:

MMD(P ;Q)

= sup
kf kH�1

[EP f (X )� EQ f (Y )]

= sup
kf kH�1

hf ; �P � �QiH

= k�P � �QkH

In terms of kernels:

MMD2(P ;Q) = k�P � �Qk
2
H

= EPk(x ; x 0)| {z }
(a)

+ EQk(y ; y 0)| {z }
(a)

� 2EP ;Qk(x ; y)| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity. 5/30



MMD Flow (NeurIPS 19)
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Motivation: Neural Net training

min
Z1;:::;ZN2Z

L

 
1
n

nX
i=1

�Zi

!

Optimization using gradient de-
scent:

Z t+1
i = Z t

i �
rZiL

 
1
n

nX
i=1

�Z t
i

!

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)
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min
�2P

L (�)
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Motivation: Neural Net training

From previous slide:

min
�2P

L(�) := E(x ;y)[ky � EZ�� [�Z (x )]k2]

Connection to the MMD:

Assume well-specified setting, y(x ) = EU��? [�U (x )]

Random feature formulation,

L(�) = Ex

h
kEU��? [�U (x )]� EZ�� [�Z (x )]k2

i
= MMD2(�; �?)

The kernel is: k(U ;Z ) = Ex [�U (x )>�Z (x )].

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)

9/30



Motivation: Neural Net training

From previous slide:

min
�2P

L(�) := E(x ;y)[ky � EZ�� [�Z (x )]k2]

Connection to the MMD:

Assume well-specified setting, y(x ) = EU��? [�U (x )]

Random feature formulation,

L(�) = Ex

h
kEU��? [�U (x )]� EZ�� [�Z (x )]k2

i
= MMD2(�; �?)

The kernel is: k(U ;Z ) = Ex [�U (x )>�Z (x )].

Chizat, Bach. “On the global convergence of gradient descent for over-parameterized
models using optimal transport”, NeurIPS (2018)

9/30



Intuition: MMD as “force field” on �

Assume henceforth

�; �� 2 P2(R
d) :=

�
� 2 P(Rd) :

Z
kxk2d�(x ) <1

�
:

MMD as free energy: target ��, current distribution �

F(�) :=
1
2
MMD2(��; �) =

1
2
E�k(x ; x 0)| {z }
interaction

+
1
2
E��k(y ; y 0)| {z }
constant

� E�;��k(x ; y)| {z }
confinement

Consider fyig
n
i=1

i:i:d:
� �� and fxig

n
i=1

i:i:d:
� �.

Force on a particle z :

�
X

j

rz k(z ; xj ) +
X

j

rz k(z ; yj ) = �rz f̂ �?;�t (z )

Can we formalize this?

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flows
Tangent space of

�
P2(R

d);W2

�
at � is h 2 L2(�) where h : Rd ! R

d .
Define rW2F(�) of F at � using Taylor expansion

F((Id+ �h)#�) = F(�) + � hrW2F(�); hiL2(�) + o(�) (1)

The gradient flow is then:

@t�t = div(�trW2F(�t ))

Under reasonable assumptions [A. Theorem 10.4.13]

rW2F(�) = rF 0(�):

where first variation in direction �:

F(�+��) = F(�)+�

Z
F 0(�)(x )d�(x )+o(�) �+�� 2 P2(R

d) (2)

[A] Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008)
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Wasserstein gradient flow on MMD
First variation of 1

2MMD2(�?; �) =: F(�)

F 0(�)(z ) := f �?;�(z ) = 2 (EU��? [k(U ; z )]� EU�� [k(U ; z )])

The W2 gradient flow of the MMD:

@t�t = div(�trW2F(�t )) = div(�trf �?;�t )

McKean-Vlasov dynamics for particles (existence and uniqueness
under Assumption A):

dZt =�rZt f �?;�t (Zt )dt ; Z0 � �0

Assumption A: k(x ; x ) � K , for all x 2 Rd ,
Pd

i=1 k@ik(x ; �)k2 � K1d andPd
i;j=1 k@i@j k(x ; �)k2 � K2d , d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of
probability measures. (2008, Ch. 10)
Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)
Arbel, Korba, Salim, G. (NeurIPS 2019)
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Wasserstein gradient flow on the MMD
Forward Euler scheme [A, Section 2.2]:

�n+1 = (I � 
rf �?;�t )#�n

Zn+1 = Zn � 
rZn f �?;�n (Zn); Z0 � �0; Zn � �n

Under Assumption A, �n approaches �t as 
 ! 0

Consistency? Does �t converge to �? as t !1?

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)
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Consistency
Can we use geodesic (displacement) convexity?

A geodesic �t between �1 and �2 is given by the transport map
T �2

�1 : Rd ! R
d :

�t =
�
(1� t)Id+ tT �2

�1

�
#�1

A functional F is displacement convex if:

F(�t ) � (1� t)F(�1) + tF(�2)

MMD is not displace-
ment convex in general
(it is always mixture
convex1).

Figure from Korba, Salim, ICML 2022 Tutorial, “Sampling as
First-Order Optimization over a space of probability measures”

1. F(t�1 + (1� t)�2) � tF(�1) + (1� t)F(�2) 8t 2 [0; 1]).
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MMD flow in practice

Data
Particles
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Empirical observations

Some observations:

Almost all particles tend to collapse at the center of mass m of the
target �?, i.e.: (�t ' �m)
� However, the loss stops decreasing: rf �?;�t (z ) ' 0 for z on the

support of �t (and is small when far from �
?)...

� ...and in general, rf �?;�t (z ) 6= 0 outside the support of �t .

Idea: Adapt the kernel according to distance of �t to �?.

“Broad” kernel when distributions far apart,

“narrow” kernel when they are close.

Noise injection in NeurIPS 2019 was a first attempt.

16/30



Empirical observations

Some observations:

Almost all particles tend to collapse at the center of mass m of the
target �?, i.e.: (�t ' �m)
� However, the loss stops decreasing: rf �?;�t (z ) ' 0 for z on the

support of �t (and is small when far from �
?)...

� ...and in general, rf �?;�t (z ) 6= 0 outside the support of �t .

Idea: Adapt the kernel according to distance of �t to �?.

“Broad” kernel when distributions far apart,

“narrow” kernel when they are close.

Noise injection in NeurIPS 2019 was a first attempt.

16/30



Noise injection for convergence

Noise injection: Evaluate rf �?;�t outside of the support of �t to get a
better signal!

Sample ut � N (0; 1) and �t is the noise level:

Zt+1 = Zt � 
rf �?;�t (Zt + �tut ); Zt � �t

Similar to continuation methods,1 but extended to interacting particles.

Different from entropic regularization:

Zt+1 = Zt � 
rf �?;�t (Zt ) + �tut

Blur RKHS kernel with t -dependent Gaussian noise
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Noise injection: consistency
Recall: Zt+1 = Zt � 
rf �?;�t (Zt + �tut ); Zt � �t

Tradeoff for �t

Large �t : �t+1 � �t not a descent direction any more:
F(�t+1) > F(�t )

Small �t : does not converge

Need �t such that:

F(�t+1)�F(�t ) � �C
E Xt��t
ut�N (0;1)

[krf �?;�t (Xt + �tut )k
2]

tX
i

�2
i !

t!1
1

Then [A, Proposition 8]

F(�t ) � F(�0)e�C

Pt

i �
2
i :

[A] Arbel, Korba, Salim, G. (NeurIPS 2019) 18/30
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Noise injected MMD flow in practice
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Noise injected MMD flow in practice
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Adaptive MMD Flow (ICLR 25)
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Will an adaptive kernel help?
Define the two measures:

�? := N (0; �2Id) �t := N (�t ; �
2Id):

Consider the family of MMDs:

MMD2
�(�

?; �t ) with k�(x ; y) = ��d exp[�kx � yk2=(2�2)]

21/30
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Will an adaptive kernel help?
Choose kernel such that:

�? = argmax��0 kr�tMMD2
�(�

?; �t )k:

Then
�? = ReLU(k�tk

2=(d + 2)� 2�2)1=2:

Value of mean �t Kernel width �

22/30



How to train an adaptive MMD (1)
Diffusion:

Generate forward path ~�t ; t 2 [0; 1], such that ~�0 = �?, and
~�1 = N(0; Id) is a Gaussian noise.

Given samples ~x0 � ~�0, the samples ~xt j~x0 are given by

~xt = �t ~x0 + �t�; � 2 N(0; Id);

with �0 = �1 = 1 and �1 = �0 = 0.

low t : ~xt close to the original data ~x0,
high t : ~xt close to a unit Gaussian

Schedule (�t ; �t ) is the variance-preserving one of Song, Sohl-Dickstein, Kingma, Kumar,
Ermon, Poole. Score-based generative modeling through stochastic differential equations
(ICLR 2021)
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Ermon, Poole. Score-based generative modeling through stochastic differential equations
(ICLR 2021)
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How to train an adaptive MMD (2)
Time-dependent MMD training loss:

F(�; t) :=
1
2
E~�tk�;t (~xt ; ~x 0t ) + E~�t ;��k�;t (~xt ; y)

with kernel
k�;t (x ; y) = �(x ; t ; �)>�(y ; t ; �)

and witness f (�;t)�?;~�t
.

Train � by minimizing noise-conditional loss on forward path:

Ftot(�; t) = F(�; t) + �`2F`2(�; t) + �rFr(�; t);

Ftot(�) = Et�U [0;1] [Ftot(�; t)]

where

F`2(�; t) is a “variance”-style penalty
Fr(�; t) = 1

N
PN

i=1(krf (�;t)�?;~�t
(~xt ;i )k2 � 1)2; is a gradient penalty

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS
2017)
Binkowski, Sutherland, Arbel, G. (NeurIPS 2018) 24/30
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Sample generation

Algorithm Noise-adaptive MMD gradient flow
Sample initial particles Z � N(0; Id)
Set �t = (tmax � tmin)=T
for i = T to 0 do
Set the noise level t = i�t
Set Z 0

t = Z
for n = 0 to Ns � 1 do

Z n+1
t = Z n

t � �rf (�
?;t)

�?;�t
(Z n

t )

end for
Set Z = ZN

t
end for
Output Z
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Results

Table: Unconditional generation, CIFAR-10. MMD GAN (orig.), used
mixed-RQ kernel. "Orig." – original paper, "impl." – our implementation.

Method FID IS NFE

MMD GAN (orig.) 39.90 6.51 -
MMD GAN (impl.) 13.62 8.93 -
DDPM (orig.) 3.17 9.46 1000
DDPM (impl.) 5.19 8.90 100

Discriminator flows

DGGF-KL 28.80 - 110
JKO-Flow 23.10 7.48 � 150
GS-MMD-RK 55.00 - 86

DMMD (ours) 8.31 9.09 100
DMMD (ours) 7.74 9.12 250

DDPM from (Ho et al., 2020). Discriminator flows include two KL gradient flows trained adversarially:
JKO-Flow (Fan et al., 2022) and Deep Generative Wasserstein Gradient Flows (DGGF-KL) (Heng et al.,
2023). GS-MMD-RK is Generative Sliced MMD Flows with Riesz Kernels (Hertrich et al., 2024)
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Summary

Gradient flows based on kernel dependence measures

NeurIPS 2019, NeurIPS 2021, ICLR 2025, JMLR (submitted)

NeurIPS 2019:

NeurIPS 2021:

Adaptive MMD (ICLR 25):

(De)regularized MMD
(JMLR, submitted):
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