Gradient Flows on the Maximum Mean Discrepancy

Arthur Gretton

Gatsby Computational Neuroscience Unit,
Google Deepmind

First International Conference on Probabilistic Numerics (Probnum 2025)

Outline

MMD and MMD flow

- Introduction to MMD as an integral probability metric
- Connection with neural net training
- Wasserstein-2 Gradient Flow on the MMD
- Convergence: adaptive kernel
 - Neural Net implementation
 - Interpolation to χ^2

Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow (NeurIPS 2019) Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial training (ICLR 2025)
Chen, Mustafi, Glaser, Korba. G, Sriperumbudur (De)-regularized Maximum Mean Discrepancy Gradient Flow (submitted JMLR)

Outline

MMD and MMD flow

- Introduction to MMD as an integral probability metric
- Connection with neural net training
- Wasserstein-2 Gradient Flow on the MMD
- Convergence: adaptive kernel
 - Neural Net implementation
 - Interpolation to χ^2

Main motivation: gradient flow when the target distribution represented by samples

- A different kind of particle flow to diffusion models
- Neural network training dynamics

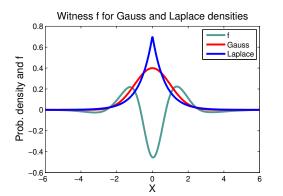
Arbel, Korba, Salim, G., Maximum Mean Discrepancy Gradient Flow (NeurIPS 2019)
Galashov, De Bortoli, G., Deep MMD Gradient Flow without adversarial training
(ICLR 2025)
Chen, Mustafi, Glaser, Korba. G, Sriperumbudur (De)-regularized Maximum
Mean Discrepancy Gradient Flow (submitted JMLR)

The MMD, and MMD flow

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P, oldsymbol{\mathcal{Q}}; F) &:= \sup_{\|f\| \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{\mathcal{Q}}} f(oldsymbol{Y})
ight] \ f(x) &= \left\langle f, arphi(x)
ight
angle_{\mathcal{H}} \ \left\langle arphi(x), arphi(x')
ight
angle_{\mathcal{H}} &= k(x, x') \end{aligned}$$



The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P, oldsymbol{Q}; F) &:= \sup_{\|f\| \leq 1} \left[\mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ f(x) &= \langle f, arphi(x)
angle_{\mathcal{H}} \ raket{arphi(x), arphi(x')}_{\mathcal{H}} &= k(x, x') \end{aligned}$$

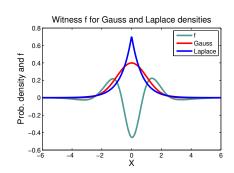
For characteristic RKHS
$$\mathcal{H}$$
, $MMD(P, Q) = 0$ iff $P = Q$

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

The MMD:

$$egin{aligned} MMD(P, oldsymbol{Q}) \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(Y)
ight] \end{aligned}$$



The MMD:

$$egin{aligned} & MMD(P, \c Q) \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_Q f(Y)
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_P - \mu_Q
ight
angle_{\mathcal{H}} \end{aligned}$$

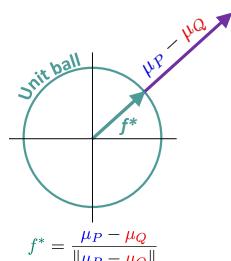
$$egin{aligned} \mathbb{E}_{P}f(X) &= \mathbb{E}_{P}\left\langle arphi(X), f
ight
angle_{\mathcal{H}} \ &= \left\langle \mathbb{E}_{P}\left[arphi(X)\right], f
ight
angle_{\mathcal{H}} \end{aligned}$$

 $=\langle \mu_P, f \rangle_{\mathcal{U}}$

use

The MMD:

$$egin{aligned} & MMD(P, \cline{Q}) \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{\cline{Q}} f(\cline{Y})
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_P - \mu_{\cline{Q}} \right\rangle_{\mathcal{H}} \ &= \|\mu_P - \mu_{\cline{Q}}\|_{\mathcal{H}} \end{aligned}$$



$$f^* = \frac{\mu_P - \mu_Q}{\|\mu_P - \mu_Q\|}$$

The MMD:

$$egin{aligned} MMD(P, oldsymbol{Q}) \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_P - \mu_{oldsymbol{Q}}
ight
angle_{\mathcal{H}} \ &= \left\| \mu_P - \mu_{oldsymbol{Q}}
ight\|_{\mathcal{H}} \ f^*(x) \propto \left\langle \mu_P - \mu_{oldsymbol{Q}}, arphi(x)
ight
angle_{H} \ &= \operatorname{E}_P k(X, x) - \operatorname{E}_{oldsymbol{Q}} k(oldsymbol{Y}, x) \end{aligned}$$

The MMD:

$$egin{aligned} & MMD(P, oldsymbol{Q}) \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left[\operatorname{E}_P f(X) - \operatorname{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_P - \mu_{oldsymbol{Q}}
ight
angle_{\mathcal{H}} \ &= \|\mu_P - \mu_{oldsymbol{Q}} \|_{\mathcal{H}} \end{aligned}$$

In terms of kernels:

$$MMD^{2}(P, Q) = \left\| \mu_{P} - \mu_{Q} \right\|_{\mathcal{H}}^{2}$$

$$= \underbrace{\mathbb{E}_{P} k(x, x')}_{(a)} + \underbrace{\mathbb{E}_{Q} k(y, y')}_{(a)} - 2 \underbrace{\mathbb{E}_{P,Q} k(x, y)}_{(b)}$$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

MMD Flow (NeurIPS 19)

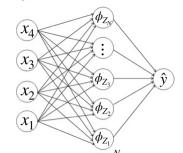
arXiv > stat > arXiv:1906.04370

Statistics > Machine Learning

[Submitted on 11 Jun 2019 (v1), last revised 3 Dec 2019 (this version, v2)]

Maximum Mean Discrepancy Gradient Flow

Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton



$$\min_{Z_1,...,Z_N} \mathbb{E}_{data}[\|y - \frac{1}{N} \sum_{i=1}^{N} \phi_{Z_i}(x)\|^2]$$

$$\min_{oldsymbol{Z}_1,...,oldsymbol{Z}_N \in oldsymbol{\mathcal{Z}}} \mathcal{L}\left(rac{1}{n}\sum_{i=1}^n \delta_{oldsymbol{Z}_i}
ight)$$

Optimization using gradient descent:

$$Z_i^{t+1} = Z_i^t - \gamma
abla_{Z_i} \mathcal{L}\left(rac{1}{n}\sum_{i=1}^n \delta_{Z_i^t}
ight)$$

$$\min_{\substack{Z_1, \dots, Z_n \in \mathcal{Z} \\ Z_1, \dots, Z_n \in \mathcal{Z}}} \mathcal{L}\left(\frac{1}{n} \sum_{i=1}^n \delta_{Z_i}\right) \xrightarrow[n \to \infty]{} \min_{\substack{v \in \mathcal{P} \\ X_3}} \mathcal{L}\left(v\right)$$

$$(x, y) \sim data$$

$$\underbrace{x_4}_{x_3} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{\phi_{Z_2}}_{x_1} \underbrace{\phi_{Z_2}}_{x_2} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{\phi_{Z_2}}_{x_2} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{\phi_{Z_2}}_{x_2} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{\phi_{Z_2}}_{x_2} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{\phi_{Z_2}}_{x_2} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{\phi_{Z_2}}_{x_2} \underbrace{\phi_{Z_1}}_{x_2} \underbrace{$$

From previous slide:

$$\min_{
u \in \mathcal{P}} \mathcal{L}(
u) := \mathbb{E}_{(x,y)}[\lVert y - \mathbb{E}_{Z \sim
u}[\phi_Z(x)]
Vert^2]$$

From previous slide:

$$\min_{
u \in \mathcal{P}} \mathcal{L}(
u) := \mathbb{E}_{(x,y)}[\lVert y - \mathbb{E}_{Z \sim
u}[\phi_Z(x)]
Vert^2]$$

Connection to the MMD:

- Assume well-specified setting, $y(x) = \mathbb{E}_{U \sim \nu^*} [\phi_U(x)]$
- Random feature formulation,

$$\mathcal{L}(
u) = \mathbb{E}_x \left[\| \mathbb{E}_{oldsymbol{U} \sim
u^\star} [oldsymbol{\phi}_{oldsymbol{U}}(x)] - \mathbb{E}_{Z \sim
u} [oldsymbol{\phi}_{oldsymbol{Z}}(x)] \|^2
ight] = MMD^2(
u, rac{
u^\star}{
u^\star})$$

■ The kernel is: $k(U, Z) = \mathbb{E}_x[\phi_U(x)^\top \phi_Z(x)]$.

Intuition: MMD as "force field" on ν

Assume henceforth

$$oldsymbol{
u}, oldsymbol{
u}^* \in \mathcal{P}_2(\mathbb{R}^d) := \left\{ \mu \in \mathcal{P}(\mathbb{R}^d) \ : \ \int \|x\|^2 d\mu(x) < \infty
ight\}.$$

MMD as free energy: target ν^* , current distribution ν

$$\mathcal{F}(\nu) := \frac{1}{2} MMD^2(\nu^*, \nu) = \frac{1}{2} \underbrace{\mathbb{E}_{\nu} \, k(x, x')}_{\text{interaction}} + \frac{1}{2} \underbrace{\mathbb{E}_{\nu^*} k(y, y')}_{\text{constant}} - \underbrace{\mathbb{E}_{\nu, \nu^*} \, k(x, y)}_{\text{confinement}}$$

Intuition: MMD as "force field" on ν

Assume henceforth

$$oldsymbol{
u}, oldsymbol{
u}^* \in \mathcal{P}_2(\mathbb{R}^d) := \left\{ \mu \in \mathcal{P}(\mathbb{R}^d) \ : \ \int \|x\|^2 d\mu(x) < \infty
ight\}.$$

MMD as free energy: target ν^* , current distribution ν

$$\mathcal{F}(\boldsymbol{\nu}) := \frac{1}{2} MMD^2(\boldsymbol{\nu^*}, \boldsymbol{\nu}) = \frac{1}{2} \underbrace{\mathbb{E}_{\boldsymbol{\nu}} k(\boldsymbol{x}, \boldsymbol{x'})}_{\text{interaction}} + \frac{1}{2} \underbrace{\mathbb{E}_{\boldsymbol{\nu^*}} k(\boldsymbol{y}, \boldsymbol{y'})}_{\text{constant}} - \underbrace{\mathbb{E}_{\boldsymbol{\nu}, \boldsymbol{\nu^*}} k(\boldsymbol{x}, \boldsymbol{y})}_{\text{confinement}}$$

Consider $\{\mathbf{y}_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \boldsymbol{\nu}^*$ and $\{x_i\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} \boldsymbol{\nu}$.

Force on a particle z:

$$-\sum_{j}
abla_{z} k(z, \pmb{x_{\!j}}) + \sum_{j}
abla_{z} k(z, \pmb{ extbf{y}}_{\!j}) = -
abla_{z} \hat{f}_{\pmb{
u}^{\star}, \pmb{
u}_{t}}(z)$$

Can we formalize this?

Wasserstein gradient flows

Tangent space of $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ at μ is $h \in L^2(\mu)$ where $h : \mathbb{R}^d \to \mathbb{R}^d$. Define $\nabla_{W_2} \mathcal{F}(\mu)$ of \mathcal{F} at μ using Taylor expansion

$$\mathcal{F}((\mathrm{Id} + \epsilon h)_{\#\mu}) = \mathcal{F}(\mu) + \epsilon \left\langle \nabla_{W_2} \mathcal{F}(\mu), h \right\rangle_{L^2(\mu)} + o(\epsilon) \tag{1}$$

Wasserstein gradient flows

Tangent space of $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ at μ is $h \in L^2(\mu)$ where $h : \mathbb{R}^d \to \mathbb{R}^d$. Define $\nabla_{W_2} \mathcal{F}(\mu)$ of \mathcal{F} at μ using Taylor expansion

$$\mathcal{F}((\mathrm{Id} + \epsilon h)_{\#\mu}) = \mathcal{F}(\mu) + \epsilon \left\langle \nabla_{W_2} \mathcal{F}(\mu), h \right\rangle_{L^2(\mu)} + o(\epsilon) \tag{1}$$

The gradient flow is then:

$$\partial_t \pmb{
u}_t = \operatorname{div}(\pmb{
u}_t
abla_{W_2} \mathcal{F}(\pmb{
u}_t))$$

Wasserstein gradient flows

Tangent space of $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ at μ is $h \in L^2(\mu)$ where $h : \mathbb{R}^d \to \mathbb{R}^d$. Define $\nabla_{W_2} \mathcal{F}(\mu)$ of \mathcal{F} at μ using Taylor expansion

$$\mathcal{F}((\mathrm{Id} + \epsilon h)_{\#\mu}) = \mathcal{F}(\mu) + \epsilon \left\langle \nabla_{W_2} \mathcal{F}(\mu), h \right\rangle_{L^2(\mu)} + o(\epsilon)$$
 (1)

The gradient flow is then:

$$\partial_t \pmb{
u}_t = \operatorname{div}(\pmb{
u}_t
abla_{W_2} \mathcal{F}(\pmb{
u}_t))$$

Under reasonable assumptions [A. Theorem 10.4.13]

$$\nabla_{W_2}\mathcal{F}(\mu) = \nabla \mathcal{F}'(\mu).$$

where first variation in direction ξ :

$$\mathcal{F}(\mu + \epsilon \xi) = \mathcal{F}(\mu) + \epsilon \int \mathcal{F}'(\mu)(x) d\xi(x) + o(\epsilon) \qquad \mu + \epsilon \xi \in \mathcal{P}_2(\mathbb{R}^d) \ \ (2)$$

Wasserstein gradient flow on MMD

First variation of
$$\frac{1}{2}MMD^2(\nu^*, \nu) =: \mathcal{F}(\nu)$$

$$\mathcal{F}'(
u)(z) := f_{
u^*,
u}(z) = 2\left(\mathbb{E}_{U\sim
u^*}[k(U,z)] - \mathbb{E}_{U\sim
u}[k(U,z)]\right)$$

The W_2 gradient flow of the MMD:

$$\partial_t
u_t = \operatorname{div}(
u_t
abla_{W_2} \mathcal{F}(
u_t)) = \operatorname{div}(
u_t
abla f_{
u^*,
u_t})$$

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019)

Wasserstein gradient flow on MMD

First variation of
$$\frac{1}{2}MMD^2(\nu^*, \nu) =: \mathcal{F}(\nu)$$

$$\mathcal{F}'(
u)(z) := f_{
u^*,
u}(z) = 2\left(\mathbb{E}_{U\sim
u^*}[k(U,z)] - \mathbb{E}_{U\sim
u}[k(U,z)]\right)$$

The W_2 gradient flow of the MMD:

$$\partial_t
u_t = \operatorname{div}(
u_t
abla_{W_2} \mathcal{F}(
u_t)) = \operatorname{div}(
u_t
abla_{
u^*,
u_t})$$

McKean-Vlasov dynamics for particles (existence and uniqueness under Assumption A):

$$dZ_t = - \,
abla_{Z_t} f_{{m
u}^{ullet},{m
u}_t}(Z_t) dt, \qquad Z_0 \sim {m
u}_0$$

Assumption A:
$$k(x,x) \leq K$$
, for all $x \in \mathbb{R}^d$, $\sum_{i=1}^d \|\partial_i k(x,\cdot)\|^2 \leq K_{1d}$ and $\sum_{i,j=1}^d \|\partial_i \partial_j k(x,\cdot)\|^2 \leq K_{2d}$, d indicates scaling with dimension.

Ambrosio, Gigli, and Savaré. Gradient flows: in metric spaces and in the space of probability measures. (2008, Ch. 10)

Mroueh. Sercu, and Raj. Sobolev Descent. (AISTATS, 2019)

Arbel, Korba, Salim, G. (NeurIPS 2019)

Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

$$egin{aligned}
u_{n+1} &= (I - \gamma
abla f_{oldsymbol{
u^{\star}},
u_t})_{\#}
u_n \ &Z_{n+1} &= Z_n - \gamma
abla_{Z_n} f_{oldsymbol{
u^{\star}},
u_n}(Z_n), &Z_0 \sim
u_0, \ Z_n \sim
u_n \end{aligned}$$

Under Assumption A, ν_n approaches ν_t as $\gamma \to 0$

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)

Wasserstein gradient flow on the MMD

Forward Euler scheme [A, Section 2.2]:

$$egin{aligned}
u_{n+1} &= (I - \gamma
abla f_{oldsymbol{
u}^\star,
u_t})_\#
u_n \ &Z_{n+1} &= Z_n - \gamma
abla_{Z_n} f_{oldsymbol{
u}^\star,
u_n}(Z_n), &Z_0 \sim
u_0, \ Z_n \sim
u_n \end{aligned}$$

Under Assumption A, ν_n approaches ν_t as $\gamma \to 0$

Consistency? Does ν_t converge to ν^* as $t \to \infty$?

[A] Arbel, Korba, Salim, G. (NeurIPS 2019)

Consistency

Can we use geodesic (displacement) convexity?

■ A geodesic ρ_t between ν_1 and ν_2 is given by the transport map $T_{\nu_1}^{\nu_2}: \mathbb{R}^d \to \mathbb{R}^d$:

$$ho_t = \left((1-t) \mathrm{Id} + t T_{
u_1}^{
u_2}
ight)_{\#
u_1}$$

Consistency

Can we use geodesic (displacement) convexity?

■ A geodesic ρ_t between ν_1 and ν_2 is given by the transport map $T_{\prime\prime\prime}^{\nu_2}:\mathbb{R}^d\to\mathbb{R}^d$:

$$ho_t = \left((1-t) \mathrm{Id} + t T_{
u_1}^{
u_2}
ight)_{\#
u_1}$$

 $\rho_t = \left((1-t)\mathrm{Id} + tT_{\nu_1}^{\nu_2}\right)_{\#\nu_1}$ A functional ${\mathcal F}$ is displacement convex if:

$$\mathcal{F}(
ho_t) \leq (1-t)\mathcal{F}(
u_1) + t\mathcal{F}(
u_2)$$

Consistency

Can we use geodesic (displacement) convexity?

■ A geodesic ρ_t between ν_1 and ν_2 is given by the transport map $T^{\nu_2}_{m}: \mathbb{R}^d \to \mathbb{R}^d$:

$$ho_t = \left((1-t) \mathrm{Id} + t T_{
u_1}^{
u_2}
ight)_{\#
u_1}$$

 $\rho_t = \left((1-t)\mathrm{Id} + tT_{\nu_1}^{\nu_2}\right)_{\#\nu_1}$ • A functional $\mathcal F$ is displacement convex if:

$$\mathcal{F}(
ho_t) \leq (1-t)\mathcal{F}(
u_1) + t\mathcal{F}(
u_2)$$

MMD is not displacement convex in general (it is always mixture $convex^1$).



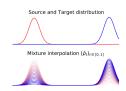
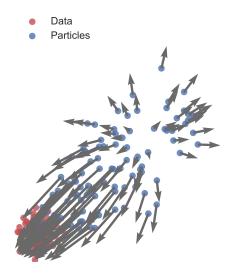


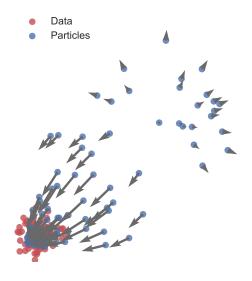
Figure from Korba, Salim, ICML 2022 Tutorial, "Sampling as First-Order Optimization over a space of probability measures"

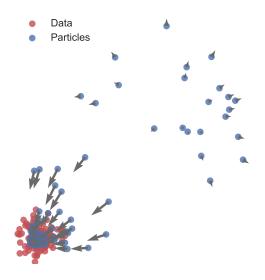
1.
$$\mathcal{F}(t\nu_1 + (1-t)\nu_2) \leq t\mathcal{F}(\nu_1) + (1-t)\mathcal{F}(\nu_2) \qquad \forall t \in [0,1]$$
.

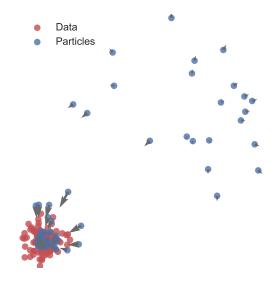
- Data
- Particles

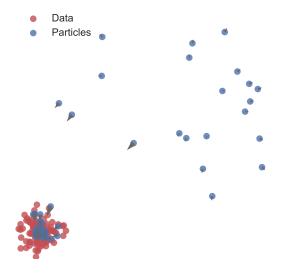
- Data
- Particles

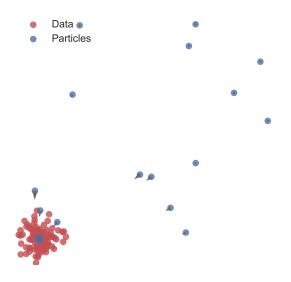




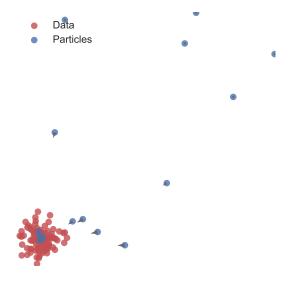








MMD flow in practice



MMD flow in practice

- Data
- Particles



MMD flow in practice

Data

Particles

Empirical observations

Some observations:

- Almost all particles tend to collapse at the center of mass m of the target ν^* , i.e.: $(\nu_t \simeq \delta_m)$
 - However, the loss stops decreasing: $\nabla f_{\nu^*,\nu_t}(z) \simeq 0$ for z on the support of ν_t (and is small when far from ν^*)...
 - ...and in general, $\nabla f_{\nu^*,\nu_t}(z) \neq 0$ outside the support of ν_t .

Empirical observations

Some observations:

- Almost all particles tend to collapse at the center of mass m of the target ν^* , i.e.: $(\nu_t \simeq \delta_m)$
 - However, the loss stops decreasing: $\nabla f_{\nu^*,\nu_t}(z) \simeq 0$ for z on the support of ν_t (and is small when far from ν^*)...
 - ...and in general, $\nabla f_{\nu^*,\nu_t}(z) \neq 0$ outside the support of ν_t .

Idea: Adapt the kernel according to distance of ν_t to ν^* .

- "Broad" kernel when distributions far apart,
- "narrow" kernel when they are close.

Noise injection in NeurIPS 2019 was a first attempt.

Noise injection: Evaluate $\nabla f_{\nu^*,\nu_t}$ outside of the support of ν_t to get a better signal!

■ Sample $u_t \sim \mathcal{N}(0, 1)$ and β_t is the noise level:

$$Z_{t+1} = Z_t - \gamma \nabla f_{\nu^*,\nu_t}(Z_t + \beta_t u_t); \qquad Z_t \sim \nu_t$$

- Similar to continuation methods, 1 but extended to interacting particles.
- Different from entropic regularization:

$$Z_{t+1} = Z_t - \gamma \nabla f_{oldsymbol{
u}^\star,
u_t}(Z_t) + oldsymbol{eta}_t u_t$$

Noise injection: Evaluate $\nabla f_{\nu^*,\nu_t}$ outside of the support of ν_t to get a better signal!

■ Sample $u_t \sim \mathcal{N}(0,1)$ and β_t is the noise level:

$$Z_{t+1} = Z_t - \gamma \nabla f_{oldsymbol{
u}^{\star},
u_t}(Z_t + oldsymbol{eta}_t u_t); \qquad Z_t \sim oldsymbol{
u}_t$$

- Similar to continuation methods,¹ but extended to interacting particles.
- Different from entropic regularization:

$$Z_{t+1} = Z_t - \gamma \nabla f_{\nu^*,\nu_t}(Z_t) + \beta_t u_t$$

Noise injection: Evaluate $\nabla f_{\nu^*,\nu_t}$ outside of the support of ν_t to get a better signal!

■ Sample $u_t \sim \mathcal{N}(0,1)$ and β_t is the noise level:

$$Z_{t+1} = Z_t - \gamma \nabla f_{rac{m{
u}^{\star},
u_t}{}}(Z_t + m{eta}_t u_t); \qquad Z_t \sim m{
u}_t$$

- Similar to continuation methods, 1 but extended to interacting particles.
- Different from entropic regularization:

$$Z_{t+1} = Z_t - \gamma
abla f_{oldsymbol{
u}^st,
u_t}(Z_t) + oldsymbol{eta}_t u_t$$

Noise injection: Evaluate $\nabla f_{\nu^*,\nu_t}$ outside of the support of ν_t to get a better signal!

■ Sample $u_t \sim \mathcal{N}(0,1)$ and β_t is the noise level:

$$Z_{t+1} = Z_t - \gamma \nabla f_{\mathbf{v}^*, \mathbf{v}_t}(Z_t + \mathbf{\beta}_t u_t); \qquad Z_t \sim \mathbf{v}_t$$

- Similar to continuation methods, 1 but extended to interacting particles.
- Different from entropic regularization:

$$Z_{t+1} = Z_t - \gamma
abla f_{oldsymbol{
u}^st,
u_t}(Z_t) + oldsymbol{eta}_t u_t$$

Noise injection: consistency

Recall: $Z_{t+1} = Z_t - \gamma \nabla f_{\nu^*,\nu_t}(Z_t + \beta_t u_t); \qquad Z_t \sim \nu_t$ Tradeoff for β_t

- Large β_t : $\nu_{t+1} \nu_t$ not a descent direction any more: $\mathcal{F}(\nu_{t+1}) > \mathcal{F}(\nu_t)$
- Small β_t : does not converge

Noise injection: consistency

Recall:
$$Z_{t+1} = Z_t - \gamma \nabla f_{\nu^*,\nu_t}(Z_t + \beta_t u_t); \qquad Z_t \sim \nu_t$$

Tradeoff for β_t

■ Large β_t : $\nu_{t+1} - \nu_t$ not a descent direction any more:

$$\mathcal{F}(\mathbf{v}_{t+1}) > \mathcal{F}(\mathbf{v}_t)$$

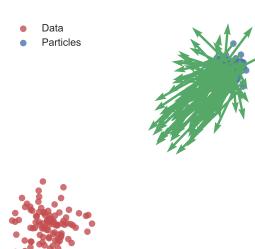
■ Small β_t : does not converge

Need β_t such that:

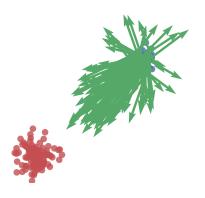
$$egin{aligned} \mathcal{F}(oldsymbol{
u}_{t+1}) - \mathcal{F}(oldsymbol{
u}_t) & \leq -C\gamma \mathbb{E} \sum_{u_t \sim \mathcal{N}(0,1)}^{X_t \sim oldsymbol{
u}_t} [\|
abla f_{oldsymbol{
u}^\star,
u_t}(X_t + oldsymbol{eta}_t u_t)\|^2] \ & \sum_i^t oldsymbol{eta}_i^2 \underset{t o \infty}{ o} \infty \end{aligned}$$

Then [A, Proposition 8]

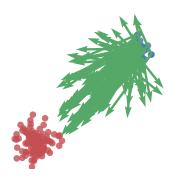
$$\mathcal{F}(\nu_t) \leq \mathcal{F}(\nu_0) e^{-C\gamma \sum_i^t \beta_i^2}.$$



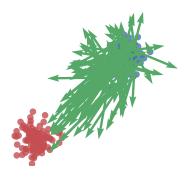
- Data
- Particles



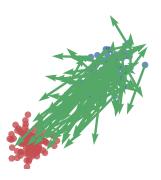
- Data
- Particles



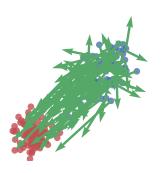
- Data
- Particles



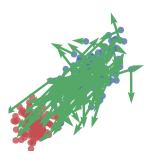
- Data
- Particles



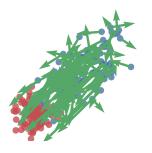
- Data
- Particles



- Data
- Particles

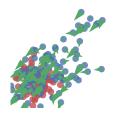


- Data
- Particles

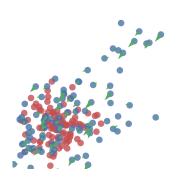


- Data
- Particles

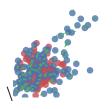
- Data
- Particles



DataParticles



- Data
- Particles



Adaptive MMD Flow (ICLR 25)

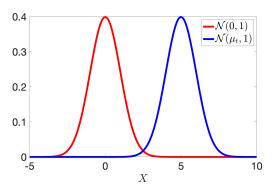
Will an adaptive kernel help?

Define the two measures:

$$\mathbf{\nu}^{\star} := \mathcal{N}(0, \sigma^2 \mathrm{Id}) \qquad \mathbf{\nu}_t := \mathcal{N}(\mathbf{\mu}_t, \sigma^2 \mathrm{Id}).$$

Consider the family of MMDs:

$$\mathrm{MMD}^2_{lpha}({\color{red}
u^\star},{\color{black}
u_t}) \qquad \mathrm{with} \qquad k_lpha(x,y) = lpha^{-d} \exp[-\|x-y\|^2/(2lpha^2)]$$



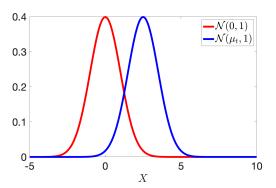
Will an adaptive kernel help?

Define the two measures:

$$\mathbf{\nu}^{\star} := \mathcal{N}(0, \sigma^2 \mathrm{Id}) \qquad \mathbf{\nu}_t := \mathcal{N}(\mu_t, \sigma^2 \mathrm{Id}).$$

Consider the family of MMDs:

$$\mathrm{MMD}^2_{lpha}({\color{red}
u^\star},{\color{black}
u_t}) \qquad \mathrm{with} \qquad k_{lpha}(x,y) = {\color{red}lpha^{-d}} \exp[-\|x-y\|^2/(2{\color{red}lpha^2})]$$



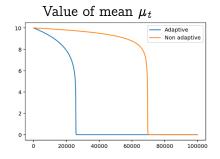
Will an adaptive kernel help?

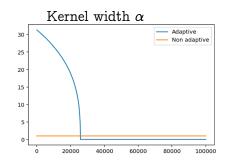
Choose kernel such that:

$$\alpha^{\star} = \operatorname{argmax}_{\alpha \geq 0} \|\nabla_{\mu_t} \operatorname{MMD}_{\alpha}^2(\boldsymbol{\nu}^{\star}, \boldsymbol{\nu}_t)\|.$$

Then

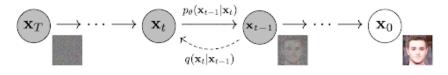
$$lpha^{\star} = \text{ReLU}(\|\mu_t\|^2/(d+2) - 2\sigma^2)^{1/2}.$$





How to train an adaptive MMD (1)

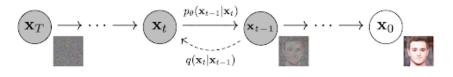
Diffusion:



Generate forward path $\tilde{\nu}_t$, $t \in [0, 1]$, such that $\tilde{\nu}_0 = \nu^*$, and $\tilde{\nu}_1 = N(0, Id)$ is a Gaussian noise.

How to train an adaptive MMD (1)

Diffusion:



Generate forward path $\tilde{\nu}_t$, $t \in [0, 1]$, such that $\tilde{\nu}_0 = \nu^*$, and $\tilde{\nu}_1 = N(0, Id)$ is a Gaussian noise.

Given samples $\tilde{x}_0 \sim \tilde{\nu}_0$, the samples $\tilde{x}_t | \tilde{x}_0$ are given by

$$\tilde{x}_t = \alpha_t \tilde{x}_0 + \beta_t \epsilon, \quad \epsilon \in N(0, Id),$$

with $\alpha_0 = \beta_1 = 1$ and $\alpha_1 = \beta_0 = 0$.

- low t: \tilde{x}_t close to the original data \tilde{x}_0 ,
- high t: \tilde{x}_t close to a unit Gaussian

Schedule (α_t, β_t) is the variance-preserving one of Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. Score-based generative modeling through stochastic differential equations (ICLR 2021)

How to train an adaptive MMD (2)

Time-dependent MMD training loss:

$$\mathcal{F}(heta,t) := rac{1}{2} \mathrm{E}_{ ilde{
u}_t} k_{ heta,t}(ilde{oldsymbol{x}}_t, ilde{oldsymbol{x}}_t') + \mathrm{E}_{ ilde{
u}_t,oldsymbol{
u}^*} k_{ heta,t}(ilde{oldsymbol{x}}_t,oldsymbol{
u})$$

with kernel

$$k_{ heta,t}(oldsymbol{x},oldsymbol{y}) = \phi(oldsymbol{x};t, heta)^ op \phi(oldsymbol{y};t, heta)$$

and witness $f_{\nu^*,\tilde{\nu}_t}^{(\theta,t)}$.

How to train an adaptive MMD (2)

Time-dependent MMD training loss:

$$\mathcal{F}(heta,t) := rac{1}{2} \mathrm{E}_{ ilde{
u}_t} k_{ heta,t}(ilde{oldsymbol{x}}_t, ilde{oldsymbol{x}}_t') + \mathrm{E}_{ ilde{
u}_t,oldsymbol{
u}^*} k_{ heta,t}(ilde{oldsymbol{x}}_t, oldsymbol{oldsymbol{y}})$$

with kernel

$$k_{ heta,t}(oldsymbol{x},oldsymbol{y}) = \phi(oldsymbol{x};t, heta)^ op \phi(oldsymbol{y};t, heta)$$

and witness $f_{\nu^*,\tilde{\nu}_t}^{(\theta,t)}$.

Train θ by minimizing noise-conditional loss on forward path:

$$egin{aligned} \mathcal{F}_{ ext{tot}}(heta,t) &= \mathcal{F}(heta,t) + \lambda_{\ell_2}\mathcal{F}_{\ell_2}(heta,t) + \lambda_{
abla}\mathcal{F}_{
abla}(heta,t), \ \mathcal{F}_{ ext{tot}}(heta) &= \mathbb{E}_{t \sim U[0,1]}\left[\mathcal{F}_{ ext{tot}}(heta,t)
ight] \end{aligned}$$

where

- $\mathcal{F}_{\ell_2}(\theta, t)$ is a "variance"-style penalty
- lacksquare $\mathcal{F}_{\nabla}(heta,t)=rac{1}{N}\sum_{i=1}^{N}(\|
 abla f_{m{
 u}^{*}, ilde{
 u}_{t}}^{(heta,t)}(ilde{x}_{t,i})\|_{2}-1)^{2}$, is a gradient penalty

Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville, Improved Training of Wasserstein GANs (NeurIPS 2017)

Sample generation

Algorithm Noise-adaptive MMD gradient flow

```
Sample initial particles Z \sim N(0, Id)
Set \Delta t = (t_{\text{max}} - t_{\text{min}})/T
for i = T to 0 do
   Set the noise level t = i\Delta t
   Set Z_t^0 = Z
   for n = 0 to N_s - 1 do
      Z^{n+1}_t = Z^n_t - \eta 
abla f^{(	heta^\star,t)}_{t,\star}(Z^n_t)
   end for
   Set Z = Z_t^N
end for
Output Z
```

Results

Table: Unconditional generation, CIFAR-10. MMD GAN (orig.), used mixed-RQ kernel. "Orig." – original paper, "impl." – our implementation.

Method	FID	IS	NFE
MMD GAN (orig.)	39.90	6.51	-
MMD GAN (impl.)	13.62	8.93	-
DDPM (orig.)	3.17	9.46	1000
DDPM (impl.)	5.19	8.90	100
Discriminator flows			
DGGF-KL	28.80	-	110
JKO-Flow	23.10	7.48	~ 150
GS-MMD-RK	55.00	-	86
DMMD (ours)	8.31	9.09	100
DMMD (ours)	7.74	9.12	250

DDPM from (Ho et al., 2020). Discriminator flows include two KL gradient flows trained adversarially: JKO-Flow (Fan et al., 2022) and Deep Generative Wasserstein Gradient Flows (DGGF-KL) (Heng et al., 2023). GS-MMD-RK is Generative Sliced MMD Flows with Riesz Kernels (Hertrich et al., 2024)

Images

CELEB-A (64x64)

LSUN Church (64x64)

Summary

- Gradient flows based on kernel dependence measures
- NeurIPS 2019, NeurIPS 2021, ICLR 2025, JMLR (submitted)

NeurIPS 2019:

NeurIPS 2021:

Pierre Glaser, Michael Arbel, Arthur Gretton

Adaptive MMD (ICLR 25):

(De)regularized MMD (JMLR, submitted):

Research support

Work supported by:

The Gatsby Charitable Foundation

Google Deepmind

Questions?

